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Abstract

This paper describes the first applications of a leapfrog algorithm applicable to coupled conductive and radiative transient heat transfer problems
within participating media. The algorithm separates the effects of conduction and radiation within the media into two separate energy balance
equations. Both of these new equations are initially considered individually. The solutions of the two separate energy equations are iterated in time
through a leapfrog algorithm to obtain the transient temperature response of the media being modelled. For simple geometries and in certain cases,
these equations can also be solved analytically. For cases in which analytic solutions can be employed, the algorithm is particularly accurate and
stable, and especially for large time-steps. In this paper, the leapfrog algorithm is employed to solve the coupled conductive and radiative transient
heat transfer problem in a planar layer for both one-dimensional and two-dimensional cases, for the purposes of validating the algorithm.

© 2007 Elsevier Masson SAS. All rights reserved.

Keywords: Coupled conduction radiation; Semi-transparent; Radiative transmission; Leapfrog; Verlet

1. Introduction

Coupled conductive and radiative heat transfer within partic-
ipating media is an important area of study for many industrial
applications. Porous, fibrous and semi-transparent materials are
examples of media that can exhibit thermal behaviour in which
radiative heat transfer plays an important role. Consequently
numerous cases of this type of problem for varying mediums
and geometries have been considered in the literature. In mod-
elling such problems, a non-linear integrodifferential energy
equation is formulated, which is typically a complicated mat-
ter to solve. Some of the earliest references discussing these
problems date back to the 1960s. For example, Viskanta and
Grosh [1] apply a numerical integration and iteration technique
to obtain the temperature distribution of a plane layer of grey
gas between infinite, black, parallel plates. Since then, a vari-
ety of other techniques have been employed to solve a myriad
of problems that consider different material properties and dif-
ferent geometries. For example, Tan et al. [2] employs a nodal
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analysis based on Hottel’s zonal method to treat transient cou-
pled radiative and conductive heat transfer within non-grey,
semi-transparent materials. Tan et al. [9] also employs a ray-
tracing method and Hottel and Sarofim’s zonal method to assess
one-dimensional, transient, coupled radiative and conductive
heat transfer in a multi-layer absorbing and isotropic scatter-
ing composite. Wu et al. [3] uses a discrete ordinate method to
investigate heat transfer in a two-dimensional, cylindrical, scat-
tering medium with Fresnel boundaries.

This paper presents the first applications of a technique that
employs an iterative leapfrog algorithm to solve coupled con-
ductive and radiative heat transfer problems within participating
media. This algorithm was developed for the study of fibre optic
cables transmitting intense solar radiation in order to assess the
thermal behaviour of these fibres. The motivation behind the al-
gorithm development was to minimise computation time while
retaining acceptable accuracies, over several hours of simula-
tion time. Thus, an attempt was made to incorporate analytical
heat transfer expressions into a numerical algorithm to com-
bat stability and accuracy issues resulting from large simulation
time-steps. An approach making use of a leapfrog algorithm
was found to be suitable.
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Nomenclature
K ADbSOTPLIVILY ...t m~!
Cp Specificheat ....................... Jkg TK™!
D, X,Y Medium dimensions .................ooo.... m
E Exponential integral function
q" Internal heating ........................ Wm™3
i Directional intensity ............... Wm2sr!
S Radiative source function .......... Wm=2sr!
k Thermal conductivity .............. Wm~!K™!
m Time parameter
n,p Expansion integers
N Radiation—conduction parameter
q Heatflux ..............c.ooiiiiiiia... Wm2
t TIMe .. S
T Temperature . ...........ccceeiiiieiienn... K
X,y Cartesian coordinates ...............coouuun.. m
r Position vector
Greek symbols
A Discretization
T Optical depth
A Eigenvalues
0,¢ Angles ... o radians
v Spectrally dependent

P Density ... kgm™3
1) Scattering albedo

o Stefan—Boltzmann constant

2 Solidangle .......... ... sr
Subscripts

1,2, 3,4 Referring to boundaries 1, 2, 3,4

B Boundaries

B Black body

Cond Related to the conductive solution

Rad Related to the radiative solution

r Radiation

R Reference

0 Dummy variable

Superscripts

* Dummy variable

/ Non-dimensional

f Final

i Initial, incident

1D One-dimensional

2D Two-dimensional

The Verlet algorithm was devised by L. Verlet in the early
days of dynamical molecular simulation [4]. The leapfrog algo-
rithm is a modified version of the Verlet algorithm. These types
of algorithm are well known and are usually applied to con-
trol and dynamical problems. A typical control application of
a leapfrog algorithm is to determine optimal linear quadradic
regulator and Kalman filtering gains. Typically, the algorithm
takes two related variables, such as position and velocity, and
computes them at alternate half time-step intervals via a third-
order Taylor expansion. The value of one variable at a particular
time acts as the initial condition for the other variable for the
next time-step. Second-order accuracies can be attained even
for simple solution techniques to the equations of the related
variables. Leapfrog algorithms have the further advantages of
being time reversal invariant and symplectic [5].

The mathematical formulation of a leapfrog algorithm for a
combined conduction and radiation heat transfer problem re-
sults in two auxiliary energy balance equations. Each equation
separately considers a single form of energy transfer, namely,
conduction and radiation. The solutions to these auxiliary equa-
tions are easier to obtain than the solution to the original energy
balance equation. For problems involving simple geometries,
analytic solutions can be found to the auxiliary energy balance
equations. These solutions are then employed iteratively in the
leapfrog algorithm to obtain the solution to the original energy
balance equation. Effectively, conduction and radiation are con-
sidered separately and their effects are interlaced over a single
time-step via the leapfrog algorithm. The use of analytic solu-
tions in the technique leads to informative implementation and
less computational demand for a given required accuracy. Even

though the technique can employ analytic solutions, it is inher-
ently numerical in nature and has with it associated stability and
accuracy limits.

2. Mathematical formulation

Consider a planar grey, partially transparent solid that emits,
absorbs and scatters radiation. For such a case, convection, vis-
cous dissipation and volume expansion can be omitted. The
energy equation associated with this system is given by [6]:

aT R
pcp5=kV2T—V-q+q”’ (1)

The capacity term on the left-hand side of Eq. (1) describes
the storage of energy within the medium. The first term on the
right-hand side of Eq. (1) describes the conduction within the
medium and ¢ allows for any internal heating of the medium.
The divergence of the radiative heat flux vector (V - g) describes
the net radiative energy supplied per unit volume and is given
by [6]:

- k[oT*
V-q:4n;|:T—S(t,.Q)] (2a)

Here the source function () describes the intensity distribution
throughout the medium from both emission and incoming scat-
tering of radiation. In this case, the source function considers
the medium to scatter isotropically and is given by the source
function equation [6]:

Sv(ty, 2) = (1 = w))ip(ty)
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For the leapfrog algorithm, heat transfer via conduction and
radiation are, initially, considered separately. To do this two
auxiliary energy equations are formed in place of Eq. (1):

aT, oT?
pe 8rad _ 47_[5 [S . rad] +q" 3)
t w 4
0Tcond
pep—g - =kViTeona @)

Eq. (3) contains only radiative terms and Eq. (4) contains only
conductive terms. The parameters Tyag and Tong represent the
temperature within the medium when radiation or conduction
dominates, respectively. Thus, the capacity terms on the left-
hand side of Egs. (3) and (4) describe the temperature change of
the medium due to radiation and conduction. This is not to say
that the true temperature of the medium is the sum of Ty, and
Teond- The true temperature is estimated by iteratively coupling
the solutions to Eqs. (3) and (4) in the leapfrog algorithm.

It is now possible to find analytic solutions to Eqs. (3) and
(4). For Eq. (3), we assume that S is constant over a single itera-
tion. Numerical integration is required to determine S from the
temperature profile of the medium, and therefore S is updated
at each new time-step. The method for determining the solu-
tion to Eq. (4) is geometry dependent. The iterative procedure
by which the solutions to the auxiliary equations are interlaced
is represented graphically in Fig. 1.

In Fig. 1, it is shown that the solution to Eq. (3) is updated
twice for each full time-step. This assists with the interlacing of
the two heat transfer processes and reduces any error due to the
assumption that S is constant for every half time-step. Bound-
ary conditions and initial profiles are matched and transferred
as indicated by the arrows in Fig. 1. In other words, the final
profile and boundary values resulting from the solution to the
auxiliary radiative equation after one time-step will be the ini-
tial and boundary conditions for the solution to the auxiliary

conduction equation for the next time-step. Eq. (3) is solved by
direct integration via rearranging it into the following form:

1
dr = / ————— dTg (5a)
4
/ (A= BT,y
where
" 4 S
A= q"w+4nK (5b)
wpcp

drxo
B = (5¢)

wpcp

This can be done here as S is considered constant and not a
function of T;aq. Eq. (52) can be simplified via partial fractions
to give:

/ B'/? 1
dr = / dTad
2A1/2 (A]/Z + Tr%ld) ra

B
B!/ 1
+ 2A1/2 Al/2 2 dTrad (Sd)
(W " “rad

Standard integrals [7] are then used to evaluate both terms on
the right-hand side of Eq. (5d), resulting in the following rela-
tionship:

B

1/4
2A3*BY4 (¢t + K) = tanh™! <Trad<z> )

+tan”! <T d<§)1/4> (5e)
ra A

K is a constant of integration and can be found from the initial
conditions for each time-step. If 7 is the initial Ti,q distribu-
tion then K is:

1 . B 1/4
K = Wtanh <Tr (Z) )

1 » B\ /4
g (7o) ) G

Traq 1s not readily obtainable from Eq. (5f), however, it can be
found very accurately with an iterative method procedure such
as the Newton—Raphson algorithm. It is a more complex mat-
ter to analytically solve Eq. (4). For simple geometries, such as
planar or cylindrical coordinates, it is possible to find analytic
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- ——-P- - - Analytic Radiative Solution m = Time step parameter
--—-Pp—- - Exchange of initial profiles and boundary conditions

Fig. 1. Leapfrog iterative procedure.
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solutions in multi-dimensional cases, although, this is more
difficult with the introduction of non-homogeneous boundary
conditions. Thus, for more complex conduction problems, a nu-
merical technique should be adopted. In general, the solution
to Eq. (4) will require boundary conditions to be specified and
evaluated correctly. For prescribed inhomogeneous and homo-
geneous boundary value problems the boundary conditions will
be set by the problem definition and will not change during the
course of the algorithm. Then the algorithm is only required
to pass initial temperature profiles to the sections of the algo-
rithm devoted to solving the auxiliary conduction and radiative
equation for particular time-steps. From Fig. 1, the initial tem-
perature profile can be seen to be the final temperature profile
resulting from the solution to the auxiliary radiative equation
over the previous time-step, thus:

T (@ tn—1)) = Trﬁd(r, tom—1y/2) (6a)

where r is a position vector that refers to locations not on the
boundaries, whose temperatures have already been specified.
Similarly the initial temperature profile required for the solu-
tion to the auxiliary radiative equation is the temperature profile
resulting from the solution of the auxiliary conductive equation
from the previous time-step, thus:

T (X, tom—1y/2) = TC{md(l’, Im) (6b)

For inhomogeneous transient boundary conditions, such as ra-
diative boundary conditions, the algorithm should pass both
boundary values and initial conditions between solutions to
the auxiliary energy equations. For the case of radiative inho-
mogeneous boundary conditions, the solution to the radiative
auxiliary equation also defines the radiative boundary condi-
tions. Thus, for the solution to the radiative auxiliary equation,
the boundary values are transient and their values at the end
of a time-step are passed to the solution of the auxiliary con-
duction equation, where they are considered prescribed, for the
next time-steps:

Teond(Tp, tin—1)) = Trﬁd(rb, tam—1)/2) (Ta)

where 1, is a position vector that refers to locations on the
boundaries. Conversely for conductive inhomogeneous bound-
ary conditions, such as convective boundary conditions, the so-
lution to the auxiliary conductive equation defines the boundary
conditions, which are passed to the solution to the auxiliary ra-
diative equation, where they are considered prescribed.

Trad(Yps tom—1)/2) = Tc‘{,nd(l’b, tm—1)—m) (7b)
3. Accuracy and stability

The leapfrog algorithm is inherently numerical, and there-
fore, its accuracy is affected by changing the time and spatial
steps of the algorithm. For the cases in which analytic solutions
can be employed the accuracy of the leapfrog algorithm can be
excellent even for large time-steps. In employing an analytic so-
lution to Eq. (4), potentially any time-steps can be used, as the
solution is not subject to any stability criteria. This would not

be the case when employing a numerical technique, such as ex-
plicit finite difference, and the necessary stability criteria should
be observed. In the next section, the algorithm is validated via
a simple example, and its accuracy is assessed.

4. Algorithm validation

The leapfrog algorithm is applied to a plane-layer geometry
heat transfer problem where the participating medium is grey
and scattering has been ignored. The grey medium has a thermal
conductivity of k and an absorption coefficient of «, both of
which are constant. The layer is between parallel black plates
at constant uniform temperatures 77 and 7> which are spaced
a distance D apart (see Fig. 2). This problem was previously
considered in Ref. [1].

The problem is considered, one-dimensional in x, dimen-
sionless, with normalised units such that D = 1 (therefore x
varies from O to 1) and the reference temperature 7 = 7. For
this geometry the source function is (prime indicates dimen-
sionless terms) [6]:

XK

2

s’ |:T1’4EéD(Kx) + T E}P [k (D — x)]

D
+Kx{/T/4(x*)E{D[K(x —x*)]dx*
0
D

+/T’4(x*)E11D[K(x* —x)]dx*” (8)

X

where El1D and E2lD are one-dimensional exponential, inte-
gral functions of first- and second-order respectively [6], in-
tegrated from ¢ = 0 to ¢ = m. For this particular problem,
T, =T/ Ty = 1/10 and initially the entire medium is at a tem-
perature of 7| = T1/T; = 1. The transient temperature of the
participating medium is desired. This problem is solved via the
leapfrog algorithm and is compared to the solution found via an
Euler finite difference algorithm as described in Ref. [8]. The
source function (Eq. (8)) is calculated via the procedure indi-
cated in Ref. [6]. Due to the simplicity of the geometry, analytic
solutions are employed in the leapfrog algorithm. Egs. (3) and
(4) in dimensionless form are:

X

o>

/ T2
. S ———
L, -7 T
® // D
-
,/ |
T

Fig. 2. Plane-layer geometry [6].
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T, d 4
a5 - 1 o
oT! d )
—8Ct0’n =NV Tc/ond (10)
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/ Trad / Tcond , 4KU Tkg
Taa = > cond — ’ r= t
TR TR wpcp
" T S k

(q///)/: q 0)3’ s = —, — —w% (11a—f)
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The parameter N is the conduction-to-radiation parameter and
its value denotes the relative effects of conduction and radiation.
Eq. (9) is solved by direct integration with the solution:

T/
’ 314, ’_ -1 rad
2(5 +(q )) '+ K =tanh ((S/+(q///)/)1/4>

+ tan~! _ Tha (12)
(S’ + (q///)/)1/4

For a 1D planar geometry Eq. (10) reduces to:

2
a TC/OI‘ld — a TC/OIld (1 3)
ar’ a1

where t is the optical depth (r = xk). The boundary condi-
tions to be applied to Eqgs. (12) and (13) are prescribed by the
boundary temperatures (7 and T)). However, for the case when
N =0, the boundary conditions become transient with the so-
lution to the auxiliary radiative equation, but still no boundary
conditions are passed as conduction now plays no role in the
algorithm. Initial conditions are passed between solutions to
the auxiliary equations as indicated in Egs. (6a) and (6b), such
that:

(14a)

Tiaa (T Wom—1y jpem) = (14b)

The solution to Eq. (13) can be found via the method of partial
solutions [4], and is given by:

/ / / /
Toona (T ton—1y—m) = Tad (T L1y~ 2m—1)2)

Tc/ond(t’ l(/m—l)—m)

o0

. Nyt

Tlona(T: )= Cysin(ur)e” V!
n

T! (D, t")—T! (0,¢
+ ( cond( )D cond( )>T + TC/OIld(Ov 1) (15a)
where
) D
Ci=1% f g()sin(h,7) dr (15b)
0
and
nw
Ay = = (15¢)
T! (D,t")—T! (0,
g(l/):Téond(T’t/)_< cnt )D = )>T
+ Tclond(o’ t/) (15d)

The algorithm proceeds via the following procedure as indi-
cated in Fig. 1.

1. The algorithm begins by evaluating S’ and evaluating
Eq. (12) over the first 7,/ ; half time-step, from the original
initial conditions. The boundary temperatures are always
fixed at 7| and T;,.

2. The temperature profile resulting from step 1 is now the

initial condition for Eq. (13) over the first Tc/ond full time-

step.

Eq. (13) is now solved over the first 7/, full time-step.

4. The temperature profile resulting from step 3 is now the
initial condition for the evaluation of Eq. (12) over the sec-

ond T, ; half time-step. S’ is evaluated again from the new
initial condition.

5. Eq. (12) is now evaluated over the second Tr’ad half time-
step.

6. The temperature profile resulting from step 5 is now the ini-
tial condition for the evaluation of Eq. (12) over the third
T, ; half time-step. S’ is evaluated again from the new ini-
tial condition.

hed

Steps 1-6 are repeated until the desired simulation time. In
Fig. 3(a), a series of transient temperature profiles, simulated
via the leapfrog algorithm, close to steady state, are plotted
for varying values of N. Viskanta and Grosh [1] considered
the same problem addressed here and developed a numerical
iteration procedure to solve for the steady state temperature pro-
file of the plane layer. The results of Viskanta and Grosh are
also plotted in Fig. 3(a) for the same values of N. Fig. 3(b)
is an enlarged view of the area enclosed by the box seen in
Fig. 3(a). Figs. 3(a) and (b) demonstrate that the leapfrog tem-
perature profiles are consistent with the corresponding steady
state temperature profile of Viskanta and Grosh. In addition,
both temperature profiles representing the N = 0 case exhibit
the temperature slip at each boundary as is normally observed
for such cases [6]. Figs. 4(a) and (b) show the transient be-
haviour of the leapfrog algorithm, along with an implicit fi-
nite difference algorithm and “truth” for the N = 0.03 case.
In Figs. 4(a) and (b) it can be seen that as simulation time ap-
proaches infinity, all the transient algorithms converge on the
steady state solution of Viskanta and Grosh, also plotted. The
truth values are generated via an implicit finite difference al-
gorithm which progresses with a very small time-step of 0.005
and has a spatial discretization of Ax = 0.005. The temperature
profiles produced by this algorithm are considered the actual
transient temperature of the plane layer so that transient errors
can be estimated for both the leapfrog and implicit finite dif-
ference algorithms. As no exact solution is available for the
transient behaviour, it is difficult to determine the true tran-
sient error. It was found that a steady state error resulted in
each of the transient algorithms considered, and it appeared
significantly dependent on the spatial discretization chosen. It
was also found that the algorithm time-step had more effect
on the transient error than the steady state error. The spatial
discretization of the truth algorithm was selected such that it
resulted in a steady state error of 0.1% when compared to the
results of Viskanta and Grosh. This steady state error is pri-
marily a result of the spatial discretization of the geometry
resulting in errors in temperature gradient estimates and the
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Fig. 3. (a) Leapfrog and finite difference plane-layer transient temperature profiles for varying values of N. (b) Zoom in of box in (a).
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evaluation of the source function. Fig. 4(b) is an enlarged view
of the area enclosed in the box seen in Fig. 4(a) and shows
the temperature profiles produced by each algorithm at sim-
ulation times of 0.4, 0.8, 1.4, 2 and 10 in non-dimensional
time units. These times were chosen as they effectively demon-
strate the transient temperature behaviour of the plane layer
with N = 0.03. The maximum simulation time was selected, as
by this time transient temperature gradients were on the order
of 107° or lower for all algorithms, at which point the transient
algorithm was considered to have converged on its steady state
result.

In order to assess the behaviour of each algorithm’s accu-
racy, transient simulations were conducted for a selection of
time-steps and spatial discretization values. Three types of algo-
rithm were used for these transient error tests, an implicit finite
difference algorithm, a purely analytic leapfrog algorithm and
implicit finite difference leapfrog algorithm. The last algorithm
employs the implicit finite difference technique to solve the
auxiliary conduction equation of the leapfrog algorithm. The
implicit finite difference method was chosen for comparison to
allow a greater range of time and spatial discretization to be ex-
plored. For most of the situations considered, an explicit finite
difference method would be unstable. The behaviour of each
algorithm’s transient error can be seen in Figs. 5(a) and (b),
where Fig. 5(a) is the transient error for a simulation with
N =0.001 and Fig. 5(b) is the transient error for a simulation
with N = 0.03. The error is calculated by computing the ab-
solute average difference between each algorithm and the truth
algorithm at each time-steps. In both Figs. 5(a) and (b) the tran-
sient results of the leapfrog algorithms can be seen to be much
more accurate than the implicit finite difference algorithm. Fur-
thermore, the steady state error of the leapfrog algorithms is
observed to be more accurate. The steady state error for each
algorithm was observed to decrease when the spatial and tem-
poral discretization were reduced.

A further error (simulation error) can be calculated to pro-
vide a single figure of merit on how accurate an algorithm
was during a simulation by averaging the error plots shown in
Figs. 5(a) and (b). This was accomplished for the N = 0.001
case and for a range of simulation time-steps with two spa-
tial discretization values (0.01 and 0.025). The results of this
analysis are shown in Fig. 6(a). In this figure, it is seen that the
leapfrog algorithms perform consistently better than the finite
difference algorithm as the time-step employed in the simula-
tion is increased. Furthermore, the finite difference algorithm
becomes unstable after a time-step value of 0.5 where as the
leapfrog algorithms remain stable and reasonably (< 5%) ac-
curate, even for a single time-step from time zero to time 10.
Siegel [10] notes that even implicit numerical solution tech-
niques for coupled conduction and radiation problems tend to
become unstable for excessive time-steps.

In Fig. 6(a), it can be seen that as the time-step decreases
the simulation errors of algorithms with the same spatial dis-
cretization converge. This indicates that for a given spatial dis-
cretization there is a limit to the simulation accuracy that can be
achieved. Yang and Gu [11] demonstrate, for implicit numeri-
cal solution methods to parabolic partial differential equations
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Fig. 6. (a) Simulation error for leapfrog and finite difference algorithms with
N =0.001 vs. simulation time-step. (b) Computation time of leapfrog and finite
difference simulations vs. simulation time-step. (c) Required computation time
of leapfrog and finite difference simulations vs. desired simulation accuracy.
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that for a certain level of spatial discretization, a minimum
time-step exists for which the maximum simulation accuracy
will occur. Yang and Gu also note that, in some cases, once
the numerical simulation error reaches a minimum, it increases
slightly if the simulation time-step is further reduced. This was
attributed to the increased number of calculation steps for a re-
duced time-step. This phenomenon identified by Yang and Gu
[11] is observed to occur in Fig. 6(a).

In Fig. 6(b), the computation times required for each algo-
rithm are plotted against time-step and it can be seen that the
leapfrog algorithms consistently take approximately twice as
long as the finite difference algorithm to complete a simula-
tion for a given time-step. These figures demonstrate that the
leapfrog algorithms are useful for simulations employing large
time-steps in order to achieve a reasonably accurate estimate
of the plane layer temperature profile in a short period of time.
This is further emphasised in Fig. 6(c), where the computation
time required for a simulation is plotted against desired simu-
lation accuracy for all algorithms. In Fig. 6(c), it is clear that
the leapfrog algorithms take less time to yield a desired simu-
lation accuracy when compared to the implicit finite difference
algorithm.

5. Extension to multiple dimensions

The leapfrog algorithm can easily be extended to multidi-
mensional problems. All that is required is a suitable solution
technique to the auxiliary conduction energy equation in the
geometry under study. Again, for simple geometries and cir-
cumstances, this can be an analytic solution. For the auxiliary
radiation energy equation, care should be taken with the source
function to ensure the appropriate exponential integral func-
tions are employed for the given geometry [3]. To demonstrate
a two-dimensional leapfrog algorithm, a two-dimensional pla-
nar coordinate system (in x and y, see Fig. 7) is selected.

The grey medium has a thermal conductivity of k, an absorp-
tion coefficient of «, a density of p and specific heat of ¢, all
of which are constant. The problem is considered normalised,
dimensionless with X = 1, ¥ = 1 and the initial temperature of
the plane layer (77) is the reference temperature (7;) having a
value of unity. As in the one-dimensional case, scattering is ne-
glected. For this geometry, Eq. (12) remains unchanged apart
from the calculation of S” which is given by [6]:

| "
Y T2 T4
Yo
J. N T
X
¢ X )

Fig. 7. 2D planar geometry [12].
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Y
+(X — / THX,
( X) > (X, yo0) 8(2)(X,yo)

yo=0

’ EZP[180(x0, 0)]
+y f T (x, 0) 22 K00, Oy

o 83 (x0, 0)
¥ 2D
L / 7400, yoy E 0. 0]
Lo 52(0, yo)
X Y
+x f / T“(x*,y*)@ dx*dy* (16a)
x*=0 y*=0
where
5 =[x =2+ (v — 2] (16b)
5(x0, y0) = [(x — x0)> + (v — y0)*]* (16¢)

Here E%D and E%D are two-dimensional exponential integral
functions of first- and second-order respectively [6]. For this
geometry Eq. (10) reduces to:

2 2
aTc/ond — 9 Tc/ond + 9 Tc/ond (17)
ot dx2 dy?

Initially, the entire two-dimensional plane layer is at a temper-
ature of 7; = 1. Then, the temperatures along boundaries 1, 3
and 4 are instantaneously dropped to 71 = T3 = T4 = 0.5. Thus,
the boundary conditions for the simulation are the prescribed
boundary values given by 71 = T3 =173 = 0.5 and T, = 1.
Three algorithms are employed to assess the behaviour of each
algorithm’s error, which is accomplished in the same manner
as for the one-dimensional case. Two of the algorithms are fi-
nite difference methods; one being an implicit algorithm and
the other being an explicit algorithm, and the final algorithm is
a leapfrog algorithm, which makes use of an implicit solver for
the auxiliary conduction equation. Yuen and Takara [12] con-
sidered the steady state two-dimensional plane layer problem
and solved for the steady state temperature profile of the plane
layer.

In Fig. 8(a), contour plots of the two-dimensional temper-
ature distribution for the N = 0.001 case can be seen. These
plots were produced by the ordinary implicit and the im-
plicit leapfrog algorithm and are plotted for comparison. In
Fig. 8(b), the transient centre line temperature distributions of
the two-dimensional plane layer, produced by the implicit, im-
plicit leapfrog and truth algorithms, are plotted. Also plotted in
Fig. 8(b), for comparison, are the results reported by Yuen and
Takara for the N = 0.001 steady state centre line temperature
distribution.

In Fig. 9(a), contour plots of the two-dimensional temper-
ature distribution for the N = 0.01 case can be seen. These
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distributions.

plots were produced by the ordinary implicit and the im-
plicit leapfrog algorithm and are plotted for comparison. In
Fig. 9(b), the transient centre line temperature distributions of
the two-dimensional plane layer produced by the implicit, im-
plicit leapfrog and truth algorithms are plotted. Also plotted in
Fig. 9(b), for comparison, are the results reported by Yuen and
Takara for the N = 0.01 steady state centre line temperature
distribution.

In Fig. 10, the transient errors of the ordinary implicit, ex-
plicit and the implicit leapfrog algorithms are plotted for the
N =0.001 case with a time-step of 0.1. In Fig. 10, it is clear
that the transient errors of the implicit leapfrog algorithms ex-
hibit the same behaviour as seen in the one-dimensional planar
case. A total dimensionless simulation time of 4 was employed

as it was found to allow all algorithms to converge within at
least 95% of the their steady state temperature values.
Performing a similar analysis as for the one-dimensional
plane layer, different simulation time-steps are used in sim-
ulations of the two-dimensional plane layer problem and the
corresponding simulation errors is calculated. In Fig. 11, the
simulation error for each algorithm is plotted against simula-
tion time-step for the N = 0.001 case. The implicit leapfrog
algorithm is observed to become more accurate than the ordi-
nary finite difference algorithms as time-step increases. Fur-
thermore, both finite difference algorithms were observed to
become unstable and inaccurate (>10%) for time-steps greater
than 1 whereas the implicit leapfrog algorithm remained sta-
ble even for a single step to steady state. Nevertheless a limit
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in achievable accuracy is again observed. In this case, the phe-
nomenon described by Yang and Gu is clearly visible in the
implicit leapfrog algorithm. At a time-step of 0.5, the implicit
leapfrog algorithm is observed to be the most accurate of the
algorithms considered. With further reduction of the simula-
tion time-step, the accuracy of the implicit leapfrog algorithm
is observed to decrease to match that of the other finite dif-
ference algorithms. In order to determine if the leapfrog al-
gorithm offers an improvement in performance, the compu-
tation time for the simulations is required. The computation
times, for these simulations, versus simulation time-step is
plotted in Fig. 12(a). In Fig. 12(b), computation time is plot-
ted against desired simulation accuracy for each algorithm.
Fig. 12(b) indicates that the implicit leapfrog algorithm is an
improvement upon the ordinary finite difference algorithms as
for a given desired simulation accuracy the required compu-
tation time for the implicit leapfrog method is less than that

4

10 T T
N — ——LeapFrog
N e Finite Difference
~
N
~
~
\\
@ 10°F \ 4
o AN
[
£ Y
s \
© AN
H o
5 10° N
(&) E ~ 4
~
~
~
~
~
~
~
1
10 L L PR ST S S | 1L 1 PR S S S | 1 1 PO S S S N Y
107 10" 10° 10'
Simulation time step
(@
10 . . . ; . . . ;
| ———LeapFrog
J ......... |mp|lt|t
jl —-—--Explicit
Il
13
1)
3 b
~ 10} {: e
A
£ /i
b= fo
S £y
s f L
= [/ A
g 2 (\ "\
o 10k CEEN 4
\ \'\.
\\ ~a
\\ .\'\
101 1 1 1 1 1 1 1 1

2 4 6 8 10 12 14 16 18
Desired simulation error (%)

(b)

Fig. 12. (a) Computation time of leapfrog pure implicit and finite difference
simulations vs. simulation time-step. (b) Required computation time of leapfrog
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TOor.

for the ordinary explicit and implicit finite difference methods.
Moreover the implicit leapfrog algorithm is capable of better
accuracy than the other finite difference algorithms. This im-
provement in accuracy is attributed to the analytic calculation
of the auxiliary radiative equation in the implicit leapfrog algo-
rithm.

6. Conclusion

Employing a leapfrog algorithm to study transient coupled
conductive and radiative heat transfer in participating media
has been shown to be a valid, accurate and informative nu-
merical approach for solving the energy balance equation in
multidimensional geometries. The leapfrog algorithm allows
analytic solutions to be employed in a numerical scheme for
suitably simple geometries. A one-dimensional plane layer ex-
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ample demonstrated the use of analytical solutions in this ca-
pacity and the high levels of accuracy that can be attained even
for large time-steps. A two-dimensional plane layer example
was also included to demonstrate that the leapfrog algorithm
could be employed in multidimensional problems. The main
benefit of the leapfrog algorithm was demonstrated to be its
ability to provide accurate transient results, performing better
than standard explicit and implicit finite difference methods es-
pecially for large simulation time-steps.
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